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Abstract

This paper presents a new algorithm which can be used to compute an approximation to
the median of a set of strings. The approximate median is obtained through the succes-
sive improvements of a partial solution. The edit distance from the partial solution to
all the strings in the set is computed in each iteration, thus accounting for the frequency
of each of the edit operations in all the positions of the approximate median. A good-
ness index for edit operations is later computed by multiplying their frequency by the
cost. Each operation is tested, starting from that with the highest index, in order to ver-
ify whether applying it to the partial solution leads to an improvement. If successful, a
new iteration begins from the new approximate median. The algorithm finishes after all
the operations have been examined without a better solution being found. Comparative
experiments involving Freeman chain codes encoding 2D shapes and the Copenhagen
chromosome database show that the quality of the approximate median string is similar
to benchmark approaches but achieves a much faster convergence.

Key words: approximate median string, edit distance, edit operations

1. Introduction

Extending the concept of “median” to structural representations such as strings
has been a challenging issue in Pattern Recognition for some time, as is shown in the

review presented in Jiang et al. (2004). This problem arises in many applications such
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as 2D shape representation and prototype construction (Jiang et al., 2000; Bunke et al.,
2002), the clustering of strings (Lourenco and Fred, 2005), Self-Organized Maps of
strings (Kohonen, 1998; Fischer and Zell, 2000) or the combination of multiple source
translations (Gonzalez-Rubio and Casacuberta, 2010).

Formally, given a set S = {§,S>,...,S,} of strings over the alphabet ) and a
distance function D(S;, S ;) which measures the dissimilarity between strings S; and

S ;, the distance from a string S’ to all strings in S can be computed by the expression
(.
SODES") = Y D(S',S)) M
Sies

The median string is the string § € Y* that minimizes (1). This string is also
denoted as the generalized median string. A common approximation to the true median
string is the set median, a string in S which minimizes (1). It is not necessary for either
the median string or the set median to be unique.

An exact algorithm with which to compute the median of a set of strings was pro-
posed by Kruskal (1983). However, in most practical applications this is not a suitable
approach due to the high computational time requirements. As Casacuberta and An-
tonio (1997) and Nicolas and Rivals (2005) point out, there are various formulations
of this problem within the NP-Complete class. Several approximations have therefore
been proposed. One approach that has been studied by several authors is that of build-
ing the approximate median by using the successive changes of an initial string. Per-
turbations can be applied one or more at a time, as in the works of Martinez-Hinarejos
et al. (2003) and Fischer and Zell (2000), respectively. The results of empirical testing
show that the first approach leads to high quality approximations but requires more
computational time. The principal motivation of this work is to describe a new algo-
rithm that is able to compute a quality approximation to the median string like that
of Martinez-Hinarejos et al. (2003), but requires significantly less computational ef-

fort. In the Section 2 some related works are examined. Section 3 describes the pro-
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posed approach and provides an analysis of the computational cost bounds for the algo-
rithm. Various comparative experiments are described in Section 4, and finally Section

5 shows our conclusions and some lines for further research.

2. Related works

Many approximated solutions have been described since Kruskal (1983) proposed
an exact algorithm that could be used to compute the median string for a given set
S of N strings of a length of / and the Levenshtein (Levenshtein, 1966) metric. This
algorithm runs in O(I") proportional time. A number of heuristics therefore address
this difficulty by reducing the size of the search space. Some authors, such as Oli-
vares and Oncina (2008), have studied the approximation to the median string not only
under the Levenshtein edit distance but also under the stochastic edit distance (Ristad
and Yianilos, 1998). In other works, the search for the approximate median is not per-
formed directly in the string space but rather in a vectorial space in which the strings
are embedded; this is the approach studied in Jiang et al. (2012) which also relies on
the weighted median concept described by Bunke et al. (2002).

One general strategy is to construct the approximate median letter by letter from an
initial empty string. In order to decide which symbol is the next to be appended it is
necessary to define a goodness function. The greedy procedure described in Casacu-
berta and Antonio (1997) implements this approach. An improvement to the aforemen-
tioned method is described in Kruzslicz (1999) through the use of a refined criterion
which allows the next letter to be selected. Another approach that has been studied by
several authors is that of building the approximate median by using successive pertur-
bations of an initial string. Two important issues regarding this kind of method are how
to select a perturbation leading to an improvement and how to make the algorithm con-
verge faster without spoiling the results. Another interesting topic is that of studying

the effect of performing modifications one by one or simultaneously. Kohonen (1985)
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starts from the set median and systematically changes the guess string by applying
insertions, deletions and substitutions in every position. In Martinez-Hinarejos et al.
(2003) the authors proposes to improve a partial solution § generating new candidates
by applying all possible substitutions, insertions or deleting the symbol at a position i.
The new partial solution is the string, selected from all the new candidates and S, which
minimizes (1). This procedure is repeated for every position i. The effect of choosing
a different initial string as the set median or a greedy approximation is also studied.
Theoretical and empirical results show that this method is capable of achieving very
good approximations to the true median string. Note that these methods do not define
a criterion to compare the operations in order to select which one can lead to better
results in each case. In Martinez-Hinarejos et al. (2002) authors describe alternatives
to speed up the computation of the approximated median string. Based on information
provided by the weight matrix used to compute the edit distance certain operations are
preferred instead others. For example, no all possible substitutions are tried but only
the two closest symbols to the one in the analysed position.

Some heuristic knowledge which can help to assess how promising a modification
will be are included in Fischer and Zell (2000) and Mollineda (2004). The quality
of a partial solution § is evaluated by computing its distance from every string in the
set, and it is thus also possible to discover the sequences of edit operations. In an
attempt to speed up the convergence of the search procedure, these authors propose the
simultaneous performance of several modifications by applying the most frequent edit
operation, including “do nothing” in each position of the partial solution. This process
is repeated while modifications increase the quality of the partial solution.

This approach has two potential drawbacks. Applying the most common operation
in every position does not guarantee the best results, and a further issue is that although
it might be relatively simple to figure out how applying just one operation will affect

SOD(S), this does not hold when several changes are made at the same time. For
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example, let § be a partial solution and op; be an edit operation which occurs several
times when computing the distance from a partial solution to strings in S. Op; thus
determines a subset SYES C § of those strings in which op; occurs when computing
the distance from §. There is also another set V0 = § — SYES. Let §” be a new
solution after applying op; to S. Intuitively, it may be expected that the distance from
8’ to strings in S Y25 decreases as regards S. A formal discussion of this result can be
found in Bunke et al. (2002). The effect on the strings in SV clearly needs to be taken
into account. Since sets induced by each operation may be different when applying
multiple operations, it might be very difficult to characterize the effect on S OD(S).
Empirical results, which will be discussed later, suggest that methods which apply
multiple perturbations at the same time are able to find a better approximation than
the set median very quickly. However, approaches which perform modifications one
by one, such as Martinez-Hinarejos et al. (2003), significantly outperform the former
methods with respect to the average distance to the set of the approximate median

computed.

3. A new algorithm for computing a quality approximate median string

As was noted earlier, a general scheme that can be used to search for an approximate

median string is:
- select an initial coarse approximation to the median, as the set median.

- generate a new solution by performing some modifications to the current solu-

tion.

- repeat while a particular modification leads to an improvement or another stop

condition holds.

The works commented on Section 2 suggest that when it is necessary to find a

quality approximation to the median string, applying modifications one by one would
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appear to be a better strategy. The theoretical results in Jiang and Bunke (2002) and
Martinez-Hinarejos (2003) show that the approximation computed by the algorithm
proposed in Martinez-Hinarejos et al. (2003) is very close to the lower bound obtained

for the value of S OD(S) for the true median.

3.1. Computing the approximate median string

The algorithm in Martinez-Hinarejos et al. (2003) tests every possible operation in
each position of the partial solution, and it might therefore be very useful to study how
to reduce the size of the search space without spoiling the quality of results, which is
one of the principal motivations of this work. The proposed algorithm is based on two

main ideas:

- selecting the appropriate modification by paying attention to certain statistics
from the computation of the edit distance from the partial solution to every string

in the set.

- applying modifications one by one.

Heuristic information could help to avoid to test a number of useless solutions,
which would reduce the amount of times that S OD(S) is evaluated. Another distinctive
feature is that if the best operation according to the goodness index does not lead to an
improvement, other low ranked operations can be tested.

The AppMedianString procedure outlines how to compute the approximate median

string.

3.2. Selecting the best edit operation

In our case, the most suitable edit operation in step ¢ will be selected by examining
two approaches. The first simply implies ranking operations by their frequency while
computing the edit distance from the partial solution to strings in the set, as in Fischer

and Zell (2000). Note that the selected operation is that with the best overall ranking,
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Function AppMedianString(S,R) :S

/+ §: instance set to compute the approximate median. */
/+* R: initialization string. */
R =R;
repeat

S=R;

foreach instance s; € S do
compute D(R’, s;);
obtain that in’ is the minimum cost edit sequence needed to transform
R’ into s;;
update statistics for the operation in each position j of R’;
end foreach
let O, be an operation queue sorted by its goodness index;

/* Generate new candidates R’ while none of them improve § */
while ¥, ¢ DS, 5:) < Y55 DR, s;) and O, # 0 do

op; = O,.dequeue;

obtain a new candidate R’ applying op; to S;
end while

until no operation op; applied to S improve the result;
return § ;

not the most frequent in a specific position. However, under a more general weighting
scheme for edit operations, the frequency might not be the best assessment of how
promising a transformation is. We therefore propose the use of Frequency x Cost as
a goodness index. For example, let S be the candidate solution and S = {S, 55, S3}.
Without loss of generality, let us suppose that the best ranked edit operation (op;) is
a substitution with a frequency of 2, and cost of 1. Let us also suppose that there
is another substitution (op;) with a frequency of 1 but with a cost of 3. From the
results in Bunke et al. (2002) we obtain that an $*! built by applying op; will satisfy
D™, 81) =D, S1)—1and D™, S,) = D', S») — 1. Regardless of the value
of D(S’ =1 83) it can be expected that § 0D(§ ) will decrease by 2. A similar analysis

shows that the application of op, leads to a reduction of 3.
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3.3. An illustrative example

The following example illustrates the algorithm’s behavior. Let St = {5,5,0},8; =
{3,1,1,2} and S, = {0,6,1,6}. The substitution of a symbol a for b obtain the cost
min{la—b|, 8 —|a—b|}, while insertions and deletions obtain the cost of 2. Table 1 shows
the computation of the edit distance from S'to S and S,. In the first case, this results
in one of the optimal edit sequences {s(5, 3), s(5, 1), s(0, 1), i(2)}. D(S',S>) results in
{5(5,0), s(5,6), s(0, 1),i(6)}. Table 2 shows an edit operation ranked by its frequency.
Note how a different goodness index leads to a different ranking. Applying the best
operation s(0, 1) in position 3 results in $**! = (5,5, 1}, which improves S OD(S)
since D(S™',S1) = 8 and D(S™',S,) = 6. If the best operation does not lead to
an improvement, then the second best option must be tested, and so on. Note that in
the list of perturbations there may be different operations related to the same position.
This option does not occur in Fischer and Zell (2000) and Mollineda (2004). The
process is repeated by starting from the new solution while some operations lead to
a better approximation. The example above also shows how ranking by Frequency X
Cost can lead to better results. As was explained previously, by applying s(0, 1) we
obtain S OD(S'*') = 14. The last column in the Table 2 shows that the operations may
be ranked differently. In this case, s(5, 1) in position 2 is the operation with the best
goodness index. If it were to be applied, then S+l = {5, 1,0} and thus D(S' #lgy=5
and D(S*1,S,) = 5, which is SOD(S 1) = 10.

3.4. Computational cost analysis

The procedure used to compute the approximate median string needs to compute
the distance from the partial solution to every string in the set. Under the Levenshtein
edit distance this can be carried out in time O(/*) by using the dynamic programming
algorithm presented in Wagner and Fischer (1974), where [ is the length of the longest

string. The foreach statement loops N times, and the first stage of the algorithm thus
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Table 1: Computation of the edit distance cost from §t=1{5,5,0}to S; = {3,1,1,2}
and S, = {0,6,1,6}. Substitutions of a symbol a by a symbol b have cost min{la —
b|,8 — |a — b|} while deletions and insertions have cost of 2. An optimal path is shaded
in order to follow the best cost operations easily and visually.

(a) (b)

3101112 0|6 |1]6
02468 02468
51212468523 (3|57
51414168 |91||5|4|5|4|6]|6
0|66 |5]|79||0|6|4|6|5 |7

Table 2: Ranking of edit operations

Operation | Position Frequency Frequency X Cost

s(0,1) 3 2 2
s(5,0) 1 1 3
s(5,1) 2 1 4
s(5,6) 2 1 1
s(5,3) 1 1 2

i(2) 3 1 2

i(6) 3 1 2

requires a time that is proportional to O(N X [?). Assuming that no perturbations im-
prove the solution, the inner while loop needs to examine the whole queue O,,.

Let | 3’| be the size of the alphabet; min{N, | 3’ |} substitutions are possible for each
of the / symbols in S, this is the maximum number of substitutions, and there are
thus O(I x min{N,| Y, |}) potential substitutions. The same result holds for insertions.
Only [ deletions are possible. A pessimistic upper bound to |O,] is therefore O(2 X
I x min{N,| X%} + ). In the worst case, each operation in O, involves computing the
distance from R’ to all the strings, which requires O(N x ). Under these assumptions,
inner while takes a time proportional to O(N X I* xmin{N, | 3. |}). Let k be the number of
times that the outer repeat loops, thus the algorithm requires O(kxXN xBxmin{N,| 3 ),
which is the same time required by the algorithm described by Martinez-Hinarejos et al.
(2001). However, in practice the proposed approach behaves much better as suggest

results which will be discussed in Section 4.
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4. Experimental results

Experiments were carried out to evaluate the performance of the proposed approach
when computing an approximate median string. To ensure independent results with
regard to the alphabet, the strings over two sets of symbols were tested. In the first case,
> =10,1,2,3,4,5,6,7, 4}, corresponding to the directions of Freeman chain codes
(Freeman, 1974) where A denotes the empty symbol used for deletions and insertions.
Edit operation costs were fixed in a manner similar to that of Rico-Juan and Micé
(2003), that is, a cost of 2 for deletions and insertions and min{la — b|,8 — |a — b|}
for substitutions. The strings in each set are not randomly generated but are a chain
code representation of the contours from two widely known 2D shape databases, the
NIST-3 Uppercase Letters and the USPS Digits , (Jain and Zongker, 1997; Garcia-Diez
et al., 2011; Rico-Juan and Ifesta, 2012), with 26 and 10 classes, respectively. Four
independent samples of 20 instances per class were drawn for a total of 144 different
sets. Our approach was used to compute an approximate median for each of them. The
proposed algorithm, referred to as JR-S, was compared to the methods proposed by
Fischer and Zell (2000) and Mollineda (2004) which performs several modifications
at the same time, and that of Martinez-Hinarejos (2003) which modifies the partial
solution in a one by one manner.

In a second test, strings were drawn from the chromosomes dataset used by Martinez-
Hinarejos et al. (2003). This time ), = {a,b,c,d,e,=,A, B, C, D, E, 1}, and the cost of
each operation was computed as in Martinez-Hinarejos et al. (2003). Four samples of
20 instances were again selected for each of the 22 classes.

Tables 3 and 4 show the results for each set in the respective databases. In order

to facilitate the comparison of the results of different algorithms and datasets, in each

SOD(S)

M . . . .
SODS™)? where S is the set median. The lower it is, the

case we compute the ratio
e

better the approximation to the true median found by the algorithm is. In each case “¢”,

“SM> or “S” refer to the initial string, that is, the empty string, the set median and

10
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the greedy initialization proposed by Casacuberta and Antonio (1997). Since all the
algorithms in the test work in an iterative manner, the number of distances computed

by each approach that evaluates S OD(S ) was also studied. The graphics in Figure 1 and

SODS)

2 show the average value for 50D(s™)

and the average number of distances computed
by each approach in all the experiments.

Besides, a third experiment was carried out to compare the results with respect to
the true median. In this case we collect four sets of 20 random generated strings over
the alphabet ), = {0,1,2,3,4,5,6,7, 1} with length varying from 3 to 8. Operation
costs were fixed as explained before. Table 5 shows results on this simple database.

As mentioned previously, the results confirm that applying perturbations to the par-
tial solution one by one leads to a much better quality approximation to the true median
in terms of S OD(S). In every set, either the proposed approach or Martinez-Hinarejos
(2003) provides the most precise approximation. In general, the solutions computed
with JR-S are equivalent to or even better than those attained with Martinez-Hinarejos
(2003) but, as Tables 3 and 4 show, the proposed approach is, on average, about 10
times faster than Martinez-Hinarejos (2003) in terms of the computed distances. In
some cases ranking the operations by Frequency X Cost instead Frequency can lead to
slightly better approximations, but in general, it also requires the computation of addi-
tional distances. On the other hand, although its results are not so good in terms of the
approximate median quality in the methods of Fischer and Zell (2000) and Mollineda
(2004), only a few distances are needed to notably improve the set median. In both
cases it would appear that the algorithm gets stuck in a local minimum after a small
number of iterations.

A comparison in terms of running time was also included, as Figure 3 shows. The
experiments were performed in a computer with an Intel X5355-2.66 GHz CPU (4
cores) and 8 Gb RAM. It can be observed that algorithms introduced by Fischer and

Zell (2000) and Mollineda (2004) are in average about 30 times faster than ours. On the

11
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other hand, the proposed approach runs near 8 times faster than the methods described

by Martinez-Hinarejos et al. (2003).
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Figure 1: 1a shows the average for so5 S0D™ in all experiments. This measure represents

the quality of the results. The chart in 1b shows the average number of distances (in
thousands) (Freeman chain codes set). In both cases, less value is better.

5. Conclusions and Future work

A new approach with which to compute a quality approximation to the median
string has been presented. The algorithm builds an approximate median through the
successive refinements of a partial solution. Modifications are applied one by one in a
manner similar to that of Martinez-Hinarejos et al. (2003), and empirical results show
that this approach leads to better approximations than those methods which apply sev-
eral perturbations simultaneously, although the latter runs much faster. Comparisons
with Martinez-Hinarejos (2003) show that the proposed algorithm is able to compute
high-quality approximations to the true median string, but requires significantly less
computation, and is about 10 times faster, which makes it highly suitable for applica-
tions that require a precise approximation. As was pointed in Section 2, an operation
op; determines two subsets S5 and SV from S. Applying op; to § results in new

string §” such as the distance from strings in S Y% to §” will decrease. Further research
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Figure 2: 2a shows the average for SSOOLQ(SSA)) in all experiments. This measure represents
the quality of the results. The chart in 2b shows the average number of distances (in
thousands) (Copenhagen chromosomes set). In both cases, less value is better.

may address to better characterize how behaves the distance from S to strings in § ¥
without computing those distances, but using information gathered when computing
the distances to . This can help to select the better operation to reduce the number of
distances computed without spoiling the approximation quality. Another subject of in-
terest is that of analysing how the choice of a different optimal path will affect results,

since a different ranking might be obtained.
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Table 5: Comparison of the average distance from the approximated median to each
string in the set respect the true median. (Synthetic data)
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Synthetic 1 | 6.5 65 65 68 65 65 65
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Synthetic2 | 7.9 8.4 81 81 &1 8.1 8.1
Synthetic 3 | 8.0 84 85 80 80 80 80 80
Synthetic 4 | 7.3 76 7.6 73 74 73 173 13
Average 74 7.8 179 74 76 74 15 15
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